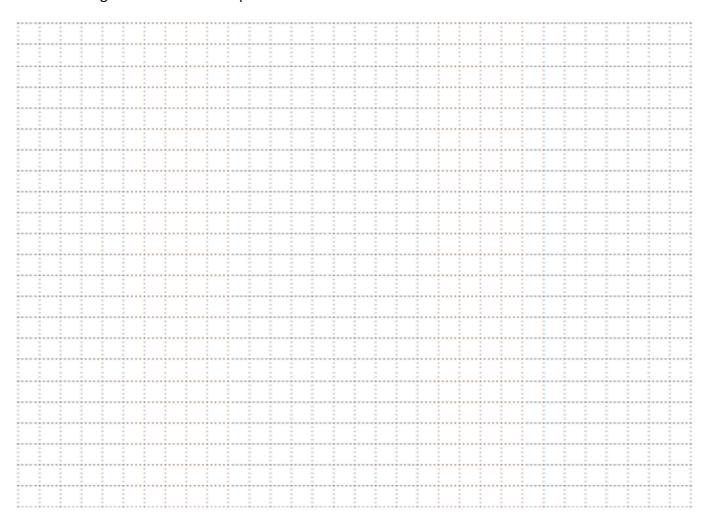
DÉRIVÉES ET APPLICATIONS

Exercices variés

C. SCOLAS

1. Dérivé les fonctions suivantes sachant que a et b sont des réels constants :

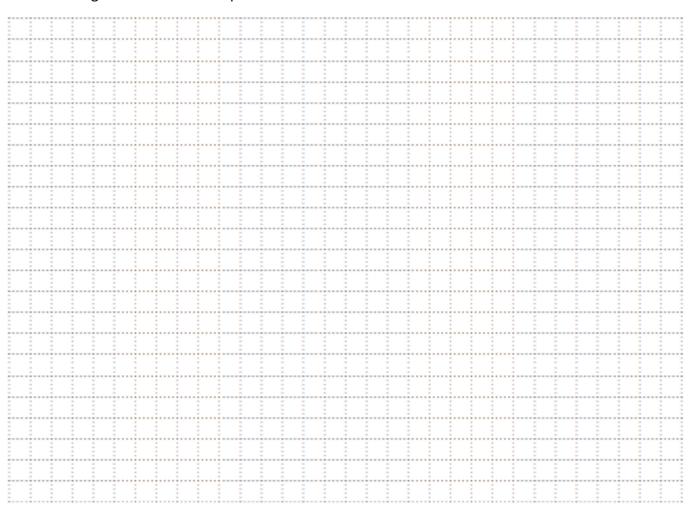
(1)
$$f(x) = a\frac{x^2}{2} - 2ax - 1$$

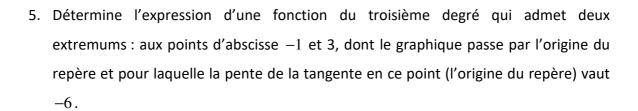

$$(2) \ f(x) = \sqrt{2ax}$$

$$(3) \ f(x) = \frac{ax+1}{bx}$$

2. Détermine une équation réduite de la tangente au graphe de $f(x) = x \cdot \sqrt{x^2 + 2x}$ au point d'abscisse a = 1.

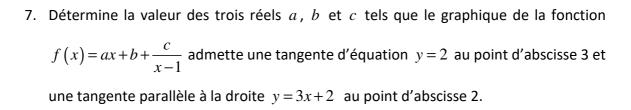
3.	Détermine	une	équation	réduite	de	la	tangente	au	graphe	de	la	fonction
	$f(x) = \frac{2x}{x}$	$\frac{+1}{-1}$ e	n son poin	t d'abscis	se 4.	•						


Représente ensuite la fonction, en indiquant les manipulations graphiques, et la tangente dans un seul repère orthonormé.


Manipulations graphiques:

4. Détermine une équation réduite de la tangente au graphe de la fonction $f(x) = 2x^2 - 4x - 1$ en son point d'abscisse 2.

Représente ensuite la fonction, en indiquant les manipulations graphiques, et la tangente dans un seul repère orthonormé.



Manipulations graphiques:	
0. cl	

6. On considère la fonction f définie par $f(x) = \frac{x^2 + ax + b}{x - 2}$ où $a, b \in \mathbb{R}$.

Détermine a et b tels que la droite d'équation y=8 soit tangente à G_f au point d'abscisse 3.

8. Détermine le domaine de dérivabilité de la fonction $f(x) = \sqrt{2x^2 - 5x + 3}$.

9. Détermine le domaine de dérivabilité de la fonction $f(x) = 5x - \sqrt{9 - x^2}$.